
Sprites

Overview
In this tutorial, you'll learn how to draw your own icons and images, convert them
to the Ringo compatible format and use them in your games and apps.

Since most of the things on Ringo are really small in pixel size (the screen itself is
160x128), pretty much everything you draw will be low-res and there will be no
way to make something uber-complex. However, lack of pixels can sometimes
cause real troubles when you're trying to draw shapes that are not that simple.

Bored of the default icons? No worries, you'll soon know how to draw and import new
ones!

Luckily for us, the Internet is full of these things and there are plenty of pixel-like
drawings that are free to use and available to everyone. You can pretty much
find everything you want - from the icons all the way to the monsters in games.

Most of this tutorial will be based on how to make your own sprites. To do that,
we'll be using GNU Image Manipulation Program or simply GIMP.

GIMP is one of the world's most versatile and popular graphics editors and the
best thing about it is - it's free to use and open-source!

Drawing and importing
sprites

The installation of this software is pretty straightforward and we'll not go through
it here, so make sure you download it from here and then come back.
Of course, you can use other editors, such as Photoshop or even Aesprite, which
is probably the best pixel-art tool on the market. These programs are not free to
use, so we'll focus on the one that is the most accessible to everyone.

Let's go!

How do sprites work?
You may be wondering how do icons and indicators get loaded from Ringo. Are
they just imported from the SD card? In which format are they?

Well actually, pretty much everything you see on Ringo is clear code.
Backgrounds, simple shapes, and individual pixels are being drawn directly to
the screen and everything else that is a little bit more complex is located in one
very specific file called sprites.c.

Every icon and image is actually converted in pure code that corresponds with
RGB565 bitmap, but more on that a little bit later.

This is how sprites.c looks like in VSCode editor

At first, it seems that these are just some random hexadecimal values, but
actually they are color codes.

RGB565
There any many different ways the colors are defined digitally. Probably the
most popular encoding is RGB, which actually means RED, GREEN, and

https://www.gimp.org/
https://www.gimp.org/
https://www.gimp.org/
https://www.adobe.com/products/photoshopfamily.html
https://www.adobe.com/products/photoshopfamily.html
https://www.aseprite.org/
https://www.aseprite.org/
https://github.com/CircuitMess/CircuitMess-Ringo-firmware/blob/master/src/sprites.c
https://github.com/CircuitMess/CircuitMess-Ringo-firmware/blob/master/src/sprites.c

Conversion from RGB888 to RGB565

 If you want to learn how to do this conversion manually, click here.

Additionally, there are some simple black icons, that are just represented by 0s
and 1s. If the pixel should be black it's set to 1 and if not it's set to 0. These types of
sprites are much simpler and take up much less memory, so don't use colored
ones unless you have to.

Simple phone icon being written in 0s and 0s

All of these sprites that are located in sprites.c are saved in PROGMEM which is
internal phone memory. SD card is not necessary for these to work so you can
have a clean phone experience even without the SD card. However, internal
memory is very limited, so you always have to make sure not to overfill it with
unnecessary things.

So how to get all the way from drawing our first pixel to displaying the bitmap on
the phone?
Well, these are the necessary steps:

1. Draw the bitmap inside of a graphic editor

BLUE. Every color is represented by the mix of those three colors. RGB565 uses
a total of 16 bits to code one specific color. 5 bits are used for both red and
blue values, while 6 bits are used for the green value. All in all, those 16 bits are
represented with a 4-digit hexadecimal number since one hex digit is 4
binary digits. For example, code 0xF800 is translated to RGB(128,0,0) which
would translate to clean red. This way of coding is much more memory
efficient than RGB888, which uses 8 bits of information for each color, and it
still allows for a huge array of different colors.

http://www.barth-dev.de/about-rgb565-and-how-to-convert-into-it/
http://www.barth-dev.de/about-rgb565-and-how-to-convert-into-it/
http://www.barth-dev.de/about-rgb565-and-how-to-convert-into-it/
http://www.barth-dev.de/about-rgb565-and-how-to-convert-into-it/

2. Convert the bitmap to RGB565 code

3. Save that code to sprites.c (or one of the files)

4. Draw the bitmap on the display

Icon drawing on the main menu - icons' RGB565 codes are being loaded from
sprites.c

Alternatively, you can also import direct bitmaps and display them without
converting them to the code. However, due to the limited internal memory, this
can only be done from the SD card. It is the technique that is used to import
icons for games and apps that are added additionally.

Drawing bitmaps directly onto the screen - without conversion

This is pretty much all you need to know - now let's get to drawing!

Drawing

Using GIMP
Now, let's open up GIMP and start drawing!

The main screen in GIMP

Now, this is how the main screen looks in GIMP. Just like in most advanced
editors, there are a lot of options, most of which we are not going to use, so don't
worry if you're a complete beginner at this.

Sprites that we're going to draw are coming in two sizes: 24x26 pixels and 24x24
pixels. The bigger ones are dimensions of the ones in the main menu, while the
smaller ones are located in various apps throughout the phone. There are many
more different sprite sizes in Ringo firmware, but these are most common, so
we're going to draw those.

Starting a new drawing
Before starting a new project, go to Edit -> Preferences. Since we're going to
draw pixel-perfect images, we're going to set up a grid. This step is not
necessary but it will help you a lot with precision drawing.

Setting grid spacing

Select 'Default grid' and set both horizontal and vertical spacing to 1,00 pixels.

Then go to 'Appearance' and check both 'Show grid' boxes.

Setting default window appearance

Click 'OK' and start a new drawing by
going to File -> New...

The only thing we need to change here
is setting our desired size. For this first
example, set the size to 24x26 pixels.

Click 'OK' and start the drawing.

Creating a new drawing

Empty canvas with the grid on

Drawing
Now there are two tools that we are going to use the most. You can find all of the
common tools in the upper left corner, just below the toolbar.

Bucket fill tool and pencil tool are located in the middle of the second row.
Bucket tool will help us fill bigger parts of the canvas with one color, while the
pencil will color only one pixel at the time.

Color picker is located right below the tools and that's where you'll be able to
pick your colors. Pretty simple, pretty easy.

Color picker

These are pretty much all of the tools you are going to use - so go and make a
cool picture!

What we've made in this little tutorial is a replacement icon for the Snake app.

It is not a masterpiece by any means, but it will serve its purpose.

New Snake app image

Exporting the image to Ringo
Now that our picture is drawn, it's time to export it.

For this step, it's time to insert the SD card from your Ringo into your computer.

Before saving this icon, it would be good to locate your Snake app folder on the
card and rename the 'icon.bmp' to 'icon2.bmp'.

Now go to File -> Export and locate your SD card in the explorer.

Go to the 'Snake' folder and save this file as 'icon.bmp'.

It's also important to set the image to 'Windows BMP image' so that it has a
.bmp extension.

Exporting your new image

When you finish the export, eject the SD card from your computer and put it back
in your phone.

Restart the phone and that's it - your Snake app just got a new icon!

In the previous chapter, there was a snippet of code where you could see how
are these app icons being drawn.

Here it is once again.

We see that we've drawn the bitmap called 'icon.bmp' that is located in the app
folder. That process is being repeated for every app that is located on the SD
card, which is for every game. Also, these icons are actually being shown in a
doubled resolution.

Index 2 at the end of the 182nd row means that the size of the icon is doubled.
That's why the icon is taking up 48x52 pixels on your Ringo screen.

Now, let's see how to convert these images to code.

Converting bitmap to code

Conversion can be done in multiple ways, but we'll focus just on some of them.

These types of conversion are usually done by software, so we're going to do the
same.

Software conversion
One of the programs that are rather simple, yet capable of doing this, is Image
Converter 565.

You can download it from our website and when you open it, you'll get a screen
like this.

ImageConverter565 interface

The program itself is pretty simple - you upload the bitmap, convert it, and
export the code!

You can also change the desired size if you want so.

https://www.circuitmess.com/wp-content/uploads/2020/04/ImageConverter565.zip
https://www.circuitmess.com/wp-content/uploads/2020/04/ImageConverter565.zip
https://www.circuitmess.com/wp-content/uploads/2020/04/ImageConverter565.zip
https://www.circuitmess.com/wp-content/uploads/2020/04/ImageConverter565.zip

An image has been imported

The end product will look something like this.

Full bitmap code in RGB656 (Notepad++ editor)

All you need from this code is this constant called 'icon'. Just copy it inside your
program and use it!

Another one of those programs is LCD image converter which does things pretty
similarly and is equally easy to use.

Alternatively, if you're working with smaller images, you can just copy the color
codes pixel-by-pixel inside of an array just like this one. Just remember to
convert the color to RGB565 (since the colors are usually in RGB888).

Displaying the code
Now that we've got the needed code, it's time to use it in a program.

We've already shown that 'sprites.c' file that holds various icons' codes. Since all
of those icons are declared as global constants, we're going to do the same
thing here.

To do this next step, you have to open either CircuitBlocks or Arduino IDE. If you
have setup Ringo library in any other text editor, that will do the trick as well.

This tutorial is going to be done inside CircuitBlocks, but the process itself is the
same for Arduino.

First, open CircuitBlocks and start a new project.

https://sourceforge.net/projects/lcd-image-converter/
https://sourceforge.net/projects/lcd-image-converter/

When selecting a new sketch type press 'Code'

You need to select the 'Code' button since we're going to have to type a little bit
here.

This process can't be done in a 'Block' project. What you can do is take your
block project's code, copy it to the code project, and then add the finishing
touches there.

Empty new 'Code' sketch

Now, let's copy our bitmap snippet as the global constant.

For that all we need to do is write the following line:

With our colors' hex codes being between the brackets.

That means that it would all look like this

1 const unsigned short snake_icon[SIZE] PROGMEM = { ... }

C/C++

The SIZE variable actually determines how many pixels are there. Since we have
an icon that is 24x26, that would be a total of 624 pixels. If you convert that to
hexadecimal (notice the '0x' before the number) it would translate to 270, which
is the number we've got here.

The rest of our variable are just color codes for each specific pixel. If you look
closely, you'll notice that the white color (0xffff) that colors our icon's outline, is
on the "edges" of the code.

Now, all we need to do is print that little icon out.

Printing out our new snake icon

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

const unsigned short snake_icon[0x270] PROGMEM = {

0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,

};

We've also added a little text so that the icon is not lonely on the screen!

Function 'mp.display.drawIcon()' has variables in this order: (imageFile,
locationX, locationY, width, height, scale).

Pretty self-explanatory as it is, just like in the previous example.

Here is the full code:

See, it's not that hard!

Transparent bitmaps
What if we want to have an icon that is not a rectangle, but rather a circle or
some other shape?

Well, since all icons are rectangles, that means that some pixels are going to
have to be transparent.

The problem with bitmaps - they don't have a transparent channel. Luckily, you

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

#include <MAKERphone.h>

MAKERphone mp;

const unsigned short snake_icon[0x270] PROGMEM = {

0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x2dc0, 0x2dc0, 0x2dc0, 0x2dc0,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc,

0xffff, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc, 0x42bc

0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,

};

void setup() {

 mp.begin(1);

 mp.display.fillScreen(TFT_BLACK);

 mp.display.setCursor(34,38);

 mp.display.setTextColor(TFT_GREEN);

 mp.display.print("SNAKE icon");

 mp.display.drawIcon(snake_icon, 52, 56, 24, 26, 2);

}

void loop() {

 mp.update();

}

ARDUINO

can just pick a color that will serve as a transparent one, so that each pixel with
that color will not be shown.

In the function drawIcon(), you can also add a color parameter.

So for example, if we wanted to draw our snake icon without white color outlines,
our function would look something like this:

On our screen now we have 24x26 snake icon located in the upper left corner of
the screen, and of course, without white borders.

Now you can get to drawing and importing some more complex images to your
new apps!

Using external bitmaps and editing
firmware
When creating a more complex app, it's usually better to have bitmaps in a
separate folder and just to load them whenever you need them.

That way you can fix your images on the go and don't have to waste a lot of time
converting them to code back and forth.

A good example of that one is our Space Rocks game for Ringo. You can check
its repository here.

1 void TFT_eSPI::drawIcon(const unsigned short* icon, int16_t x, int16_t y, uint16_t width, uint1

1 mp.display.drawIcon(snake_icon, 0, 0, 24, 26, 1, 0xffff);

https://github.com/CircuitMess/SpaceRocks
https://github.com/CircuitMess/SpaceRocks

Space Rocks repository on GitHub

You'll notice that besides the main files, Space Rocks has both Sounds and
Sprites folders.

Both of those folders have files that are being used in-game.

Here is how the Sprites folder looks on the inside.

Sprites folder from the Space Rocks repository

You'll notice some bitmaps and .c files. That way you can use both functions that
we've learned in the previous lesson.

Checking out the SpaceRocks.ino file will help you understand this whole
process much better, so make sure to check it out in detail if you wish to learn
more.

https://github.com/CircuitMess/SpaceRocks/blob/master/SpaceRocks.ino
https://github.com/CircuitMess/SpaceRocks/blob/master/SpaceRocks.ino
https://github.com/CircuitMess/SpaceRocks/blob/master/SpaceRocks.ino
https://github.com/CircuitMess/SpaceRocks/blob/master/SpaceRocks.ino

First few lines of the SpaceRocks.ino file

Editing firmware (advanced)
If you're feeling reaaaally good and want to change some of the things in our
original phone firmware, you can do so!

We always encourage new creations and personalizations, as long as you share
them on our forum so that everyone else can use them too. :)

If you're unfamiliar with the process of building the firmware form source files,
our most active forum members along with our staff have created a cool topic
where you can find all the details, and fixes to potential problems, on how to
download, build and upload your own version of Ringo firmware.

If you have any experience in doing these things, it will not take you more than 15
minutes to set everything up.

However, if you've never encountered these things, you might have some more
issues. We still encourage you to do so since you'll learn so much in the process.

Once you've done so, the file on which you'll be focusing the most is sprites.c.
We've already shown you how the file looks and how things work, so there's no
doubt that you get the grip of things and personalize your phone in a matter of
minutes!

If you get stuck, you can always hit us up on our community forum, where the
whole community and our staff are eager to help you and explore further parts
of this project.

Now - start making!

https://community.circuitmess.com/
https://community.circuitmess.com/
https://community.circuitmess.com/t/how-to-build-the-firmware-bin-file/2629/23
https://community.circuitmess.com/t/how-to-build-the-firmware-bin-file/2629/23

