
Setting it up

Introduction
Hello! Welcome to this little tutorial on how to modify your own Ringo and how to
create your own versions of the firmware!

In this tutorial, you won't learn how to actually program, but how to set up the
whole firmware for editing and compiling after you made your edits.

If you already have some experience in coding and compiling in different IDEs,
you shouldn't have any problems. However, if you're still familiar with the
language and never compiled your own firmware, don't worry, we'll guide you
through this tutorial.

On the other hand, if you don't have any C/C++ experience, it's best for you not to
go on with this tutorial and try to first learn the language.
All good? Okay, let's start!

IDE
The IDE or integrated development environment is a piece of software that is
used to write, edit, modify, and compile your code in order to run it either via your
computer or some other device. 
In this tutorial, we're going to use Visual Studio Code or simply VS Code, a very
popular IDE by Microsoft, which is used by developers at CircuitMess.

It is really light and easy to use, whilst offering wide support of additional plugins
that can be used if necessary. It is a "younger brother" of another very popular
IDE, Microsoft Visual Studio.

VS Code logo

Customising Ringo
firmware



You can go to the VS Code official page to download and install the software.
There are versions available for Windows, Linux, and Mac OS, and the installation
itself is pretty straightforward. 

Once installed, you should get something like this.

VS Code main screen

Before starting the development, there are a few plugins you need to install.

Click on the Extensions icon and type in
'platformio'. Select the first result
PlatformIO IDE.

This one is used to connect your firmware
to the specific hardware used by your
device.

The installation should be quick and the
files itself shouldn't take up too much
space.

https://code.visualstudio.com/
https://code.visualstudio.com/


You can see a change in your VS Code.

Once that's done you'll get a new icon on
the left-hand sidebar. 

That should mean that the installation has
been completed.

PlatformIO menu

Now that this part is done, our IDE is ready.

We can move on to downloading the code and creating the project in which we'll
modify the firmware.

Setting up the project
First, let's create a new PlatformIO project.

It's a good practice to create a new folder somewhere on your disk and to put
everything you're going to use in this project inside it.

That will definitely keep you organized and help you with the search for your files.

It would also be good to check if the board files that we need are installed
properly. 

Click on the Boards icon and search for WEMOS LOLIN32. Since the processor
inside Ringo is ESP32 by Espressif, we're going to need to use one of the boards
that have the same pinout as our board, which is this one. You can also use
some of the other boards as well and they should work fine too, although that's
not the case for all of them.

If you find it in the list, you're good to go. However, if it's not there, you need to re-



install the whole PlatformIO plugin. 

List of supported ESP32 boards is pretty big

Now, let's create a new project.

Click on the Project tab and select 'Create New Project'.

Creating a new project

A new screen should pop-up.

Here you can set the project name,
location, framework, and most
importantly, select the board.

Select the already mentioned WEMOS
LOLIN32.



The project is now created and your
folder will contain some additional
folders and files. 

We'll explain what does this all means
in a bit.

Now that the project has been set up, it's important to download the files we're
going to work with. 

For that, we're heading to the GitHub.

Downloading the source files
First things first - open a new tab on this page - https://github.com/CircuitMess.
You're going to need it a lot while modifying your firmware since there are a lot of
materials to learn from. 

CircuitMess GitHub repository - loads of cool stuff!

https://github.com/CircuitMess
https://github.com/CircuitMess


For start, we'll be looking at these two repositories - CircuitMess-Ringo and
CircuitMess-Ringo-firmware. 

Two main repositories we're going to use

First, you're going to open CircuitMess-Ringo-firmware.

It is where pretty much all of the firmware files are located and you'll be editing
those. 

When you open the repository, it looks something like this.

CircuitMess Ringo firmware repository

Download the ZIP containing all of the files. You can also use GitHub Desktop if
you're familiar with that piece of software.

GitHub Dekstop basically allows you to manipulate with GitHub repositories
much easier and faster, but we'll not be covering it in this tutorial. 

Once you've downloaded the ZIP, unpack all of the files into the project folder. 

Replace all of the files that are matching.

Your project folder should look something like this.



VS Code project folder after the insertion of Ringo firmware files

One of the most important files in this folder is platformio.ini, which contains the
settings for the board. 

Open it up and make sure that the parameters inside are set to the following:

If not, copy the lines above and paste it inside the file.

The next step is to download the CircuitMess-Ringo repository.

1

2

3

4

5

6

7

[env:lolin32]

platform = espressif32

board = lolin32

framework = arduino

board_build.partitions = min_spiffs.csv

monitor_speed = 115200

upload_speed = 921600



CircuitMess Ringo repository

Download it as a ZIP (or by using the GitHub Desktop).

When unzipping it, make sure you place it inside the lib > MAKERphone folder of
the main project folder.

Project folder before copying CircuitMess Ringo repository

Your project folder should now look something like this.



Project folder after copying CircuitMess Ringo repository

Now that everything is placed in the proper directories, it's time to compile and
upload the firmware!

Fiddling with the firmware

Compilation test
If you've set everything up correctly, you should have no issues compiling the
firmware as it is.

Select the PlatformIO icon on the left-hand sidebar and select Build under
Project tasks.

Building the firmware

The terminal should open up and show you the current status of the action.

The whole building of the firmware shouldn't take too long and it depends on
your computer speed. 

If you see a green SUCCESS, that means everything is up and running.



Terminal shows exactly what is happening during each task

Now when you connect your Ringo to the computer via the USB cable and press
Upload, the compiled firmware should appear on your phone in a minute or so. 

The phone itself will restart and you will get another green SUCCESS text.

The uploading process usually takes a bit longer

You've successfully compiled and uploaded the firmware for Ringo! Bravo!

Modification examples
Now that everything's set up, it's time to do something cool.

If you're wondering what are the things that you can change on the phone, the
answer is - pretty much everything!

Two main files out of the bunch are MAKERphone.cpp and MAKERphone.h.



MAKERphone.cpp

If you're not familiar with the .cpp and .h extensions, it's time for you to use your
friend Google and get acquainted. 

Basically, .h files are header files and you don't want to mess around with them
since they don't really contain any functionalities.

On the other hand, .cpp and .c files are the ones you want to edit.

The place where you should be spending most of your time is in the other src
folder, the one containing all the default apps.

Src folder containing all the default apps



In this folder, you can find and edit the files that define all the default menus,
apps, and other main functionalities. 

For example, you can change the color of LEDs in the flashlight app like this.

Changed lines are 10 and 11

Now when you build and upload the firmware, the first color of LEDs in the list
inside the flashlight app will be purple instead of cyan.

However, this will only change the color of the LEDs, not the color shown on the
screen, which is something you're going to have to change additionally in the
flashlight app.

Everything is ready for your creations now!

You can scroll the forum for some ideas and already made user creations. 

In our GitHub you can find many examples on how to use different functions and
how to create your own apps. 

Have fun and most importantly - keep making!

https://community.circuitmess.com/latest
https://community.circuitmess.com/latest
https://github.com/CircuitMess
https://github.com/CircuitMess

