Customising Ringo
firmware

Introduction

Hello! Welcome to this little tutorial on how to modify your own Ringo and how to
create your own versions of the firmware!

In this tutorial, you won't learn how to actually program, but how to set up the
whole firmware for editing and compiling after you made your edits.

If you already have some experience in coding and compiling in different IDEs,
you shouldn't have any problems. However, if you're still familiar with the
language and never compiled your own firmware, don't worry, we'll guide you
through this tutorial.

On the other hand, if you don't have any C/C++ experience, it's best for you not to
go on with this tutorial and try to first learn the language.
All good? Okay, let's start!

IDE

The IDE or integrated development environment is a piece of software that is
used to write, edit, modify, and compile your code in order to run it either via your
computer or some other device.

In this tutorial, we're going to use Visual Studio Code or simply VS Code, a very
popular IDE by Microsoft, which is used by developers at CircuitMess.

It is really light and easy to use, whilst offering wide support of additional plugins
that can be used if necessary. It is a "younger brother” of another very popular
IDE, Microsoft Visual Studio.

VS Code logo

You can go to the VS Code official page to download and install the software.
There are versions available for Windows, Linux, and Mac OS, and the installation
itself is pretty straightforward.

Once installed, you should get something like this.

Visual Studio Code

Editing evolved

VS Code main screen

Before starting the development, there are a few plugins you need to install.

Jo

Edit Selection View Go Run

Platformio

PlatformlO IDE 1.100

Development environment for Embed...
PlatformlO &
loT Utility 03.0

Develop loT project based on Platform...
Jun Han Install

Aceinna 012
Aceinna Navigation Studio: open-sour...
PlatformiO Install

COMP2300 IDE 209
PlatformlO IDE modified for COMP2300
comp2300-anu Install

Auto Build Marlin 2.1.16
Provides an interface to quickly build a...
Marlin Firmware Install

loT Extension Pack 0056

Build loT Solutions on top of awesome...
Jun Han Install

Discotools 104

Provides tools for debugging the disco...

discotools Install

Click on the Extensions icon and type in
‘platformio’. Select the first result
PlatformIO IDE.

This one is used to connect your firmware
to the specific hardware used by your
device.

The installation should be quick and the
files itself shouldn't take up too much
space.

https://code.visualstudio.com/
https://code.visualstudio.com/

You can see a change in your VS Code.

PLATFORMIO

Once that's done youlll get a new icon on P

the left-hand sidebar. v PIO Home
Open
That should mean that the installation has PIO Account

Inspect
been completed.

Projects & Configuration
Libraries
Boards
Platforms
Devices
v Debug
Start Debugging
Toggle Debug Console

® v Updates

Library updates
Platform updates
Update All

v Miscellaneous
Platforml|O Core CLI
Clone Git Project

New Terminal

Upgrade PlatformlO Core

Vv PROJECT TASKS

PlatformIiO menu

Now that this part is done, our IDE is ready.

We can move on to downloading the code and creating the project in which we'll
modify the firmware.

Setting up the project

First, let's create a new PlatformIO project.

It's a good practice to create a new folder somewhere on your disk and to put
everything you're going to use in this project inside it.

That will definitely keep you organized and help you with the search for your files.

It would also be good to check if the board files that we need are installed
properly.

Click on the Boards icon and search for WEMOS LOLIN32. Since the processor
inside Ringo is ESP32 by Espressif, we're going to need to use one of the boards
that have the same pinout as our board, which is this one. You can also use
some of the other boards as well and they should work fine too, although that's
not the case for all of them.

If you find it in the list, you're good to go. However, if it's not there, you need to re-

install the whole PlatformIO plugin.

T PIO Home X

QUICK ACCESS -
L

Board Explorer @

© PlatformlO currently supports over 800 boards from leading manufacturers, and we are constantly adding new ones.
You can be part of the process by letting us know what board you wish to see supported next, by

Y Platform ¥ Frameworks

v PROJECT TASKS

List of supported ESP32 boards is pretty big

Now, let's create a new project.

Click on the Project tab and select ‘Create New Project.

QUICK ACCESS
v PIO Home
Open
Projects @

figuration Search projects

Upgrade PiatformiO Core

Creating a new project

Project Wizard A new screen should pop-up.

el 5 Rk o it Mot i ety ot o Sl e Here you can set the project name,
— location, framework, and most
importantly, select the board.

Select the already mentioned WEMOS
LOLIN32.

Framework:

Location:

Fle Edit Selection View Go Run The project is now created and your
folder will contain some additional

v OPEN EDITORS folders and files.
X Welcome
RINGO-FRMWARET. T3 9 O & Wel'll explain what does this all means

> .pio in a bit.

> .vscode

2> include

> src
> test
.gitignore

Jdravisyml

P platformio.ini

Now that the project has been set up, it's important to download the files we're
going to work with.

For that, we're heading to the GitHub.

Downloading the source files

First things first - open a new tab on this page - https://github.com/CircuitMess.
You're going to need it a lot while modifying your firmware since there are a lot of
materials to learn from.

CircuitMess
Ve're a hardware startup designing and manufacturing fun and educational electronic devices

© Karlovac, Croatia @ http://circuitmess.com/ [contact@circuitmess.com

[Repositories 20 Packages People 5 Projects

Grow your team on GitHub Dismis

GitHub is home to over 50 million developers working together. Join them to grow your own
development teams, manage permissions, and collaborate on projects.

Find a repository... Type: All v Language: All v

CircuitMess-Ringo-Arduino-packages Top languages

Everything you need to work with Ringo using Arduino IDE! ®C++ @C @Python JavaScript
& ePL-21 ¥4 w2 @O0 190 Updated 3 days ago Batchfile
Invaderz-ByteBoi People 5>
Invaderz port from Ringo

- 0 0 0 0 ndated 3 days ‘ = . =
®c+ %F0 Yo O0 110 Updated3daysago []

“nr V3

Snake

Snake game for CircuitMess Ringo phone.

@cC:+ HMcp3o Fo Ywo (D0 110 Updated 3 days ago

CircuitMess GitHub repository - loads of cool stuff!

https://github.com/CircuitMess
https://github.com/CircuitMess

For start, we'll be looking at these two repositories - CircuitMess-Ringo and

CircuitMess-Ringo-firmware.

CircuitMess-Ringo
CircuitMess Ringo is an educational DIY mobile phone designed to bring

electronics and programming to the crowd in a fun and interesting way.

phone diy

@c MmmT ¥7 w3z Oo %o

Updated 17 days ago

CircuitMess-Ringo-firmware

Base firmware for CircuitMess Ringo.

®c-+ MorL3o ¥s5s w3y Oo 11

Updated 17 days ago

Two main repositories we're going to use

First, you're going to open CircuitMess-Ringo-firmware.

\ A

It is where pretty much all of the firmware files are located and you'll be editing

those.

When you open the repository, it looks something like this.

= CircuitMess / CircuitMess-Ringo-firmware

<> Code Issues Pull requests 1 Actions Projects Wiki Security Insights Settings

¥ Branch: master ~ Go to file Add file ~ ¥ Code ~

Clone with HTTPS (® Use SSH

Use Git or checkout with SVN using the web URL.

robbie8-bit committed c4ac44c on 26 May ..
lio New update - 105 nttps:/ /github. con/Circuithess Circuit 7

Update pp.cpp

o y
.gitignore Add platforr G Open with GitHub Desktop

gitmodules Change URL to C

[Download ZIP

BUILD.md Add pl

README.md

D
D
D
[LICENSE
D
D
D
D

firmware.bin ago
platformio.ini D.mi ago
version.md s ago
README.md Vi

CircuitMess Ringo firmware

CircuitMess Ringo firmware repository

@Watch 8

About e
Base firmware for CircuitMess Ringo.
M Readme

a5 GPL-3.0 License

Releases 5

© Updated version, small fixes ... (Latest)
on 24 Apr

Packages

No packages
Publish your

Contributors 8

Ceomi gl

Download the ZIP containing all of the files. You can also use GitHub Desktop if

you're familiar with that piece of software.

GitHub Dekstop basically allows you to manipulate with GitHub repositories
much easier and faster, but we'll not be covering it in this tutorial.

Once you've downloaded the ZIP, unpack all of the files into the project folder.

Replace all of the files that are matching.

Your project folder should look something like this.

File Edit Selection View Go

" OPEN EDITORS

X Welcome
RINGO-FRMWARET. T9 B O

> .pio

> .vscode
2 include
> lib

> test
.gitignore
.gitmodules
Jtravisyml
BUILD.md
firmware.bin
LICENSE
platformio.ini
README.md

version.md

VS Code project folder after the insertion of Ringo firmware files

One of the most important files in this folder is platformio.ini, which contains the
settings for the board.

Open it up and make sure that the parameters inside are set to the following:

[env:10lin32]

platform = espressif32

board = 1olin32

framework = arduino
board_build.partitions = min_spiffs.csv
monitor speed = 115200

upload speed = 921600

If not, copy the lines above and paste it inside the file.

The next step is to download the CircuitMess-Ringo repository.

< CircuitMess / CircuitMess-Ringo ©Watch | 11

<> Code Issues Pull requests Actions Projects Wiki Security Insights Settings

$ Branch: master ~ Go to file Add file ~ About B

CircuitMess Ringo is an educational DIY
3} MileG committed dsécico 17 days ago - 555 commits §* 13 branches © 7 tags mobile phone designed to bring
electronics and programming to the

examples/Pong e to MIT 17

crowd in a fun and interesting way.

prototyping pp startup routine (says no sms when there are) & www.kickstarter.com/projects/albertg.

G and 4G schemes

schematics Correc

src

[gitattributes
O .gitignore gnore
O LICENSE Changed license to MIT 1 Releases 7

NOTICEmd Changed license to MIT 17 days ago)) —
o ™ = T = © Updated version, small fixes ... (Latest)
[READMEmd Changed license to MIT 17 on 24 Apr
O firmwarebin te - 1.0.5 + 6 releases
[library.properties Fixing caller number issues

Packages

README.md Va4 No packages published

Publish your first package

CircuitMess Ringo - an educational DIY mobile phone

Contributors 8

This is the main CircuitMess Ringo GitHub repository. [- E g ‘
. M €
ar . ‘

CircuitMess Ringo repository

Download it as a ZIP (or by using the GitHub Desktop).

When unzipping it, make sure you place it inside the lib > MAKERphone folder of
the main project folder.

File Edit Selection View Go

i

v OPEN EDITORS

X @ platformio.ini

RINGO-FRMWARE-T. 19 3

> .pio

> .vscode

2 include

v lib

v MAKERphone
F README

> SIc

> test
.gitignore
.gitmodules
Jravisyml
BUILD.md
firmware.bin

R LICENSE

P platformio.ini
README.md

version.md

Project folder before copying CircuitMess Ringo repository

Your project folder should now look something like this.

File Edit Selection View Go Run T4

>

“ OPEN EDITORS
X @ plotformio.ini
RINGOFRMWARET. T9 5§ O &
> .pio
> .vscode
> include
v lib
v MAKERphone

> examples

> prototyping

> schematics

> src
Jgitattributes
.gitignore

¢ firmware.bin

library.properties
R LICENSE
NOTICE.md
README.md
F README

> src

> test
.gitignore
.gitmodules
Jtravisyml
BUILD.md

F firmware.bin

fl LICENSE

P platformio.ini
README.md
version.md

Project folder after copying CircuitMess Ringo repository

Now that everything is placed in the proper directories, it's time to compile and
upload the firmware!

Compilation test

If you've set everything up correctly, you should have no issues compiling the
firmware as itis.

Select the PlatformIO icon on the left-hand sidebar and select Build under
Project tasks.

File Edit Selection View Go Run

\/ QUICK ACCESS

v PIO Home
Open
PIO Account
Inspect
Projects & Configuration
Libraries
Boards
Platforms
Devices

v Debug
Start Debugging
Toggle Debug Console

v Updates
Library updates
Platform updates
Update All

v Miscellaneous
PlatformlO Core CLI
Clone Git Project
New Terminal

Upgrade PlatformlO Core

Vv PROJECT TASKS

® Upload and Monitor

® Upload File System image

® Remote Devices
® Remote Test

® Update project libraries

® Rebuild IntelliSense Index

Building the firmware

The terminal should open up and show you the current status of the action.

The whole building of the firmware shouldn't take too long and it depends on
your computer speed.

If you see a green SUCCESS, that means everything is up and running.

©0A0 X1 0 v > ® § A E O B s 1.cont . ot @ Gotve <SeectProgranmen _<SelctBoa ype> O <soloct St o> winz2_ 2

Terminal shows exactly what is happening during each task

Now when you connect your Ringo to the computer via the USB cable and press
Upload, the compiled firmware should appear on your phone in a minute or so.

The phone itself will restart and you will get another green SUCCESS text.

Terminal will be reused by tasks, press any key to clos:

The uploading process usually takes a bit longer

You've successfully compiled and uploaded the firmware for Ringo! Bravo!

Modification examples

Now that everything's set up, it's time to do something cool.

If you're wondering what are the things that you can change on the phone, the
answer is - pretty much everything!

Two main files out of the bunch are MAKERphone.cpp and MAKERphone.h.

File Edit Selection View Go Run Terminal Help MAKERphone.cpp - Ringo-firmware-tutorial - Visual Studio Code

@ EXPLORER MAKERphone.cpp X
v OPEN EDITORS b > MAKERphone > stc
X € MAKERphone.cpp lib\MA
RINGO-FIRMWARE-TUTORIAL
> .pio
> .vscode

> include

_t Taskl;
Taskl1code(pvParameters);

_t MeasuringTask;

> utility e mp;

MAKERphone.cpp
MAKERphone.h
gitattributes ho btnHeld;
-gitignore 0 btnHeldField[18];
E firmware.bin vint32_t _timesMeasured = 8;
t16_t offsetlvValue = 1968;
chargeDuringADCRead = ©;
t simBusyCount 0;

32_t voltageSample = 8;
voltage = 3768;

library.properties
R LICENSE
NOTICEmd
README.md S stics_t xadc_chars;
F README i) dirname, vint8_t levels)

t Serial.printf("Listing directory: %s\n", dirname);
.gitignore . i
e root = fs.open(dirname);

.gitmodules i
aimead if (!root)

Aravisym

CL I Serial.println("Failed to ope

f return;

$ platformio.in if (!'root.isDirectory())
READMEmd

Serial.println("Not a di
version.md e

MAKERphone.cpp

If you're not familiar with the .cpp and .h extensions, it's time for you to use your
friend Google and get acquainted.

Basically, .h files are header files and you don't want to mess around with them
since they don't really contain any functionalities.

On the other hand, .cpp and .c files are the ones you want to edit.

The place where you should be spending most of your time is in the other src
folder, the one containing all the default apps.

VRNGO-FRMWARET.. T 5 U &
> utility
MAKERphone.cpp
MAKERphone.h
.gitattributes
.gitignore
F firmware.bin
library.properties
f LICENSE
NOTICE.md
README.md
F README
v src
calculatorApp.cpp
calculatorApp.h
calendarApp.cpp
calendarApp.h
clockApp.cpp
clockApp.h
contactsApp.cpp
contactsApp.h
flashlightApp.cpp
flashlightApp.h
main.cpp
main.h
mainMenu.cpp
mainMenu.h
mediaApp.cpp
mediaApp.h
messagesApp.cpp
messagesApp.h
phoneApp.cpp
phoneApp.h

settingsApp.cpp
settingsApp.h

Src folder containing all the default apps

In this folder, you can find and edit the files that define all the default menus,

apps, and other main functionalities.

For example, you can change the color of LEDs in the flashlight app like this.

File

N

Edit Selection View Go Run Temminal

v OPEN EDITORS

V RINGO-FIRMWARE-TUTORIAL

MAKERphone.cpp lib\\

> utility

MAKERphone.cpp

MAKERphone.h
Qgitattributes
.gitignore

F firmware.bin

library.properties

f LICENSE
NOTICE.md
README.md

F README

v Src

calculatorApp.cpp
calculatorApp.h
calendarApp.cpp
calendarApp.h
clockApp.cpp
clockApp.h
contactsApp.cpp
contactsApp.h

flashlightApp.h
main.cpp

main.h
mainMenu.cpp
mainMenu.h
mediaApp.cpp
mediaApp.h

Help

flashlightApp.cpp X

mp.leds[i]
break;
case 1:
mp.leds[i]
break;
case 2:
mp.leds[i]
break;
case 3:
mp.leds[i]
break
case 4:
mp.leds[i]
break;
case 5:
mp.leds[il]
break;
case 6:
mp.leds[i]

break;

’

H
}

mp.pixelsBrightness = 5;

Changed lines are 10 and 11

RGB::Purple;

Green;

Red;

Yellow;

White;

Orange;

CRGB: :Fuchsia;

Now when you build and upload the firmware, the first color of LEDs in the list
inside the flashlight app will be purple instead of cyan.

However, this will only change the color of the LEDs, not the color shown on the
screen, which is something you're going to have to change additionally in the

flashlight app.

Everything is ready for your creations now!

You can scroll the forum for some ideas and already made user creations.

In our GitHub you can find many examples on how to use different functions and

how to create your own apps.

Have fun and most importantly - keep making!

https://community.circuitmess.com/latest
https://community.circuitmess.com/latest
https://github.com/CircuitMess
https://github.com/CircuitMess

