
Introduction

#1 - Installation
Welcome to the CircutBlocks tutorial!

Here is where you learn basic CircuitBlocks functionalities as well as start
working on your first programs.

If you don’t know, CircuitBlocks is a Scratch-based (a visual block programming
language) IDE in which you can easily and effectively create and upload your
projects to the Ringo phone.

This tutorial is going to be broken down into several chapters, each representing
one of the important aspects of the IDE.

NOTE: CircuitBlocks will be referred to as CB in the future

Installation
CB is supported on all major platforms.

The installation process is really easy as you just need to download the file and
install it just like you would with any other program on your preferred platform.

Windows
Go to the CircuitBlocks download page

Download the latest version *Windows.exe (ex. CircuitBlocks-1.1.0-
Windows.exe) - Check if you have a 32 or 64 version. Go to Settings on your
PC, click on the System option and find the About section where you'll see
the system type.

Double-click the file to run the executable

CB will automatically install and create a new desktop shortcut

Ringo coding - first steps

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

This is the message you might get
when trying to install CircuitBlock on
your PC. Windows reports a threat
despite the program being safe to
download and run.

Please proceed with installing by
clicking on 'More info' option.

After you click on 'More info' option, an
option to 'Run anyway' should appear
at the bottom of the window.

Proceed by clicking on 'Run anyway'.

Linux
There are two ways of installing CB on Linux

Installation:

Go to the CircuitBlocks download page

Download the latest version *Linux_amd64.deb (ex. CircuitBlocks-1.0.1-
Linux_amd64.deb)

Double-click the file to run the installation (Ubuntu)

Write inside a terminal sudo dpkg -i <path to the downloaded file
.deb> (Other Linux distros)

CB will automatically install and create a desktop entry

Stand-alone (AppImage):

Go to the CircuitBlocks download page

Download the latest version *Linux.AppImage (ex. CircuitBlocks-1.0.1-
Linux.AppImage)

Right-click on the file and select ‘Properties’

Go to Permissions and tick ‘Allow executing file as program’

Double-click the file and the installation will complete automatically



Your PC is not at risk!
There is a possibility that a notification that says your PC is at risk may pop up
when you try to install CircuitBlocks. Don't worry, this happens regardless of
CircuitBlocks being safe to run. See the instructions below on how to handle
this notification.

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

Mac OS
Go to the CircuitBlocks download page

Download the latest version *Mac.dmg (ex. CircuitBlocks-1.0.1-Mac.dmg)

Move the files to ‘Applications’ folder

CB will be installed automatically

#2 - Basics

Interface

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

Starting CB will open a window like this.

It’s pretty simple – starting a new project (sketch) can be done by clicking
the ‘New project’ button.

Saved sketches will appear right next to that button and you can access them
at any time.

One very important button is ‘Restore Ringo Firmware’. If your Ringo is
connected to the computer, it will automatically detect it and allow you to
restore the newest software with just a push of a button.

So any time you want to revert to the default software after working on a
sketch, push that button.

Whenever you encounter an error, press the 'Send error report' at the bottom of
the main screen. You'll get the report and the error number - you can use that in
the CircuitMess community forum so that our team members can help you more
efficiently.

Starting a new sketch
When starting a new sketch you'll get an option to choose from a code
project and a block project.

Code project is pretty much the same thing you'll get in Arduino IDE - straight up

Arduino C/C++ that will run your programs based on the code you've written.

On the other hand, block projects are the real ones here. There you'll be able to
generate program code from the blocks that you drag-and-drop. This is a real
Scratch-like experience and it is highly recommended to everyone beginning
their programming career or learning the ins and outs of the Ringo library. The
code that is generated can then be copied and modified in the code project.

We advise that you start the block project regardless of your programming
skills just so you can get to know the phone and the firmware better!

This is the main interface you will be
looking at most of the time.

On the top of the screen, there is
a toolbar from which you can access
main program functionalities.

The block selection tool is located on
the left side.

In the middle of the screen is where
you’ll be “drawing” your code with
the blocks.

On the right is where those drawings
will be translated into code. It is the
same code editor used in the VS Code,
but as of right now, it is read-only and
non-editable.

If you don’t like the dark mode
(blasphemy if you ask us!), you can
easily switch it by pressing the light
bulb button in the top right corner of
the code editor.

Toolbar

There are eight main components
here:

1. Back to the main menu – returns
to the main menu without saving

2. Save/Save As… – saves the file in
the default sketch directory

3. Ringo connected indicator
– indicates whether the phone is
connected or not

4. Export to binary – creates .bin file
of the code which can be directly
uploaded to the phone

5. Open serial - open Serial port

6. Close Code – closes the code
editor to expand the ‘drawing’
area

7. Minimal - Toggles minimal option

8. Run – compiles and uploads the
code to your phone

When the phone is not connected, the red ‘Run’ button will turn grey and the
indicator will say ‘Ringo disconnected’ with the red dot instead of a green one.

While a code you’ve written is being uploaded, a progress bar will appear right
below the toolbar which indicates how much data has been compiled/uploaded
so far.

When it reaches 50% it means that the compilation is over and when it reaches
100% it means that the upload to the phone is finished.



MINIMAL BUTTON
One important thing to know about the yellow button 'Minimal' is that it does
the following - compiling it with the minimal on, your program will compile
much faster, but it will not have the basic phone functions - calling, texting,
main menu... This is particularly useful when developing an app and when
you're fixing small bugs - we recommend using it ONLY when developing an
app.

1. Main code screen – this is where
the blocks will appear in the
textual format, code words are
colored while the regular text is
white

2. Light mode switch – switch the
background of the code editor
between black and white

3. Expand – stretches the code
editor over the whole window

4. Close – closes the code editor,
same functionality as ‘Close
Code’ button from the toolbar

If you are writing some more complex apps, you can copy this code and paste it
to one of the other, more complex IDEs (like Arduino or VS Code) from where you
will be able to edit it and write more lines.

The ‘Drawing board’ is the most complex part of the IDE. It’s where all the magic
happens. It is divided into two main sections. On the left is a board where you
select the blocks and on the right is a board where you place them. Each type of
block has its own color so it’s easily recognizable.

1. Search bar – dynamic search bar with which you can easily find any

component you’re looking for

2. Component selector – divided into categories by names and colors

3. Drawing board – a place where you create your programs by placing the
components in a certain order

4. Center icon - places your blocks in the center of the board

5. Zoom buttons - zoom in and out of the board

Each of the components will be explained in detail and come with a few
examples of how to use them together

#3 - Types of blocks
There are a total of nine block types in CB. Each of them is represented by their
own color. Every block translates to code, which is then compiled and uploaded
to the phone, just like on every Arduino based platform.

Pressing on every block type will open a section from which you can drag-and-
drop those blocks into the drawing area.

Also, pressing on ‘More’ will open even more blocks that are not so commonly
used.

There are two main functions of every Arduino code – void setup() and void
loop().

Everything that goes into the void setup() the function will run only once. It is
primarily used for starting the software, initializing and declaring variables and
running functions that only have to run once (ex. Intro screen in a video game).

The void loop() is where everything else takes place. It basically runs every bit of
code inside it over and over again (speed depends on the device – just imagine
it’s ultra-fast!). It should pretty much follow the refresh rate of the screen and
make the program do things accordingly.

Every block you place automatically goes into the void loop() function.

If you wish to put something in the void setup(), you have to drag the main block
from Functions and place your blocks inside as you wish, but more on that a little
bit later.

Elliptical blocks
Elliptical blocks represent variables. Whether
we’re talking about integers, strings or other
variable types (other than boolean), they can
all be recognized by the same shape.

Also, larger blocks that have elliptical shape
return either integer or float values.

When ever you find circular “holes” inside some
blocks, that is the place where variables can
be inserted. It’s most commonly found in
comparison or action blocks.

Triangular blocks
Boolean variables are represented by
triangular blocks.

Both variables (true and false), as well as
functions that return boolean values, have the
same shape.

Regardless of color, each of these blocks
returns either true or false.

Triangular “holes” require boolean blocks to be
inserted.

Building blocks
Everything else is basically a building block.
Those are functions that have no return value
(they return null). Both elliptical and triangular
blocks first have to be placed inside of the
building blocks in order to act as part of the
program.

They have a specific “puzzle” shape and can
be stacked inside each other.

The main building block is located inside the ‘Functions’
section.

It basically gives you two main building blocks sections.

Everything that is placed inside Arduino run first goes into void
setup() and everything that is placed inside Arduino loop
forever goes into a void loop().

Inserting blocks
Now, this is the main part.

The whole point of blocks-like IDE is connecting
blocks and placing them one inside another.

It is all done by simple drag-and-drop action.

Here is an example of a program that will set
the variable Var to 1 and then increase that
variable while it is smaller than 10.

At the end of the program, Var will be 10.

This is just a simple example and block-
building will be further explained in the
following chapters.

#4 - Block sections

There are a total of nine sections in CircuitBlocks. We've organized them so that
you'll be able to find everything in maximum two clicks.

Sections themselves are pretty explanatory but we'll go through them all just so
you can get a little bit better understanding of the whole concept.

Some of the sections also have additional blocks (in the 'More' menu) where
you'll be able to find some of the functions that are not used that often, but can
still be useful.

Logic
This is where the base
of every code is
located.

Every if, if-else,
else function, as well
as
comparisons, and/or,
not, true/false and
other logical
operators.

Loops

Loops are functions
that repeat everything
inside for a specific
amount of time.

They can either have
conditionals, and
repeat for as long as
that condition is met,
or they can have a
pre-determined
amount of repeats.

Math
Pretty much every
math function is
located here. From
basic operations to
rounding numbers
and working with
angles, you will easily
trigger your inner
Einstein or Pythagora
in a matter of
seconds!

Text

Strings, characters,
and string
manipulation. Great
place for creating new
text and implementing
it to your programs.

Variables
Create a variable of
any type and set its
name and desired
value. CB will
automatically
recognize the type of
the variable (int,
double, string,
boolean) so you don’t
need to worry about
that.

Functions

The Default Arduino
function (which is
explained on the
previous page) is
located here.

You can also create
your own functions
which can then be
inserted as one of the
main parts of your
program.

Input/Output
Everything regarding
Ringo’s components is
located here.

LEDs, buttons, and
joystick are controlled
via these blocks.

Display
Well, all these blocks
are really not
important if you don’t
see anything on the
screen!

Here is where all the
magic translates to
those colored pixels.
You can create so
much through these
blocks.

Time
Delays, timers, and
other time-related
stuff, great for creating
cool animations and
video games.

Search bar
There is also a search bar above all function sections to ease the search for that
one specific block you just can’t seem to find (where is that PRINT???).

Just type in whatever comes to your mind and all blocks that have anything to
do with the written word will be shown on the right-hand side.

Now, you really can’t say that it’s impossible to find something.

You’ve learned everything about the blocks!

It’s time to move on to the next lesson…

Using blocks

Changing screen color
Now that you're accustomed to every type of block, it's time to learn how to use
them!

There will be a series of small examples where you'll be able to get an
understanding of how the Ringo library works.

Each example will show different functionalities. In the end, we'll just bring all of
that together to create a cool app!

Let's begin!

Example #1
Let's kick things off as simple as possible.

The main component on Ringo is definitely the screen since working without one
would be

pretty much impossible.

What we want to do as a test is to change the screen color of our program.

The default screen color is black, or as it is known in our library, TFT_BLACK. All

colors from this
library are labeled with TFT_ prefix because they are made to be used on TFT
screens.

The first function that is there by default is mp.display.fillScreen(TFT_BLACK). It
acts as an eraser - everything will be wiped off the screen at the beginning of
the program.

Now let's move to the code generated by the blocks.

Since we want to turn our screen cyan, we are calling another fillScreen()
function from the Display section, just with a different parameter.

It's only necessary to do this once, so we're placing it in the Arduino run first: a
section which is equivalent to the void setup().

Placing it in the loop part would call the functions multiple times a second which
is in this example a complete waste of time.

Now that we've made sure everything is set, we can run the program. It will first
be compiled and then uploaded to the phone.

Ringo's screen should now be cyan. It's really as simple as that.

This is just a beginning but you can imagine that the possibilities of this screen
are countless.

Restoring defaults
Now, what if we want to stop making cool things and just use our phone? Well, it
takes only a couple of clicks to get everything back to normal.

Anytime you want to restore the original Ringo firmware to your phone, you
can do it by pressing the 'Restore Ringo firmware' button on the main menu.

Just don't forget to save the project before exiting!


Colors
The full list of available colors can be found in the Display section

Now that we've covered the basics, let's head out to something a little bit more
advanced.

Controlling the display

Scrolling colors
Now we're going to use the loop() part of the code.

See that mp.update() function? It's probably the most important function of all
and it's located under the I/O section.

Its mission is to read everything that has happened between the last time it was
called and now and to transfer those changes to the hardware.

For example, fillScreen() function would not change anything if the mp.update()
isn't called.

Besides the screen, it also refreshes buttons, the speaker, LEDs and pretty
much every other component on the phone.

One mp.update() is there by default but for this program, we've added two more.

We've also used another new block called wait().

It translates to the delay() function which stops everything for a certain
amount of milliseconds.

The number value block can be found in the Math section and its value can be
changed to suit our needs.

Since the loop() function is really fast, sometimes we need this delay to actually
see what is going on on the screen.

Using delay when expecting a fast and responsive program, however, is not the
way to go,
especially when we're using buttons. More about that in the next lesson.

What we're actually doing in this program is alternating the screen color
between three values.

Firstly we change it to white, then wait 500 milliseconds or 0.5 seconds.

Then, we change it to cyan and wait another 500 milliseconds.

Lastly, we change it to yellow, wait 500 milliseconds and return back to the
beginning of the loop, where the screen is again changed to white.

Notice that we're calling the mp.update() function after each color change in
order to transfer that color to the screen.

Writing out some text
Now that we know how to change the background color, it's time to start writing
something on that canvas.

Ringo library offers three different fonts that can be re-sized and re-colored as
we like.

Functions for that are rather simple and should not be a problem to understand
for anyone.



Update function
Be careful when using mp.update() since it is not the fastest function.Calling it
too many times in one loop will slow down the program significantly - USE IT
WELL!

With this program, we're writing some words out on the screen in different fonts,
sizes, and colors.

The font type is easily changed with the drop-down menu of the set font type
block. The font size, however, multiplies the size of the selected font by the
desired value. By default, both of those values are 1, so setting them at the
beginning of the program to that same value actually made no difference.

Later both of those values have been changed. In the last example, we're printing
out two words "And SIZE!" in a different font that is twice the size.

The print() function here is something that we're going to use quite often. The
first empty slot is a string of characters that are meant to be written out.

You can find an empty one in the Text section.

The second and third slot are the location of the first letter. Setting both of those
values to 0 will print out words in the upper left corner of the screen.

With these numbers, we're actually referencing pixel locations. Our screen is
128x160 pixels and we can manipulate each and every one of them.

Everything that we write/draw between the x values of 0 and 127 and y values
of 0 and 159 will be visible on the screen.

If any of those values is out of that range, we will not see the component.

Shapes and animations

Shapes
There are plenty of blocks that are still unexplained but offer so many different
possibilities.

For now, let's focus on ones from the Display section.

We know how to paint the entire screen with one color, but what about only the
part of it?

There is a function for drawing some of the most used shapes - rectangle, circle,
triangle, and ellipse.

All of these can be either filled or not while using the same colors as for the

screen.

Here is an example of one such program.

There are some variables that might cause some question marks here.

All of these functions have a location, size and color parameters.

The first two parameters for a rectangle are the location of its upper left corner.
The next two are its width and height. This means that it will occupy the area on
the screen which starts in the coordinates x and y and spread all the way to the
x+width and y+height.

Circle, on the other hand, is defined by the location of its center.

X and y represent the center and radius just how far from it are the furthest
points.

Triangle is defined by the coordinates of its vertexes. It doesn't matter in which
order you put them, every triangle with the same coordinates will look the same.

You can combine those shapes, overlap them, draw them outside of the screen
and many more things. Pretty much every more complex shape can be created
with the basics ones.

Animations
We already talked about how the screen refreshes 25 times in a second, which is
fast enough to create the effect of a moving image.

Animations are just that - shapes and images moved so slightly that they have
a smooth movement.

It's best that we show it by example.

We're going to take a circle and move it from the top of the screen to the bottom.
When it reaches the bottom, it will change its color and direction in which it
moves.

For this one, a new block is going to be introduced - a for loop. It's a pretty basic
function in programming and you will use it quite often.

This loop and many more can be found in the Loop section, the second one on
the list.

What exactly does for loop do? It repeats whatever is inside it a specific amount
of times.

As we can see in the example, we set the i variable to 15 and increase it by 1
every time the loop loops.

When it gets to 125, the for loop breaks and the program continues. That means
that everything inside it ran 111 times!

But what does this exactly have to do with animation? Well, we used that same i
as one of the coordinates for the circle.

Every time the loop ran, the circle went down by 1 frame, but the loop ran so fast
that we only saw the smooth movement of the circle.

Combining text and shapes
Here is a quick example of using both text and shapes at the same time. Both
shapes and text can be combined, with one drawn over the other.

Of course, on the top will always be the one whose function was called later in
the loop.

In this example, we're recreating our CircuitMess logo by using simple shapes
and text.

You can try adding some animations to it and make it come to life!

Pressing the buttons
Every Ringo is equipped with 18 buttons and a two-axis joystick, so it would be a
shame not to use them.

We're going to focus here on using the functions of drawing on the screen, but
this time we're controlling it with a simple press of a button.

This gives us much more flexibility and dramatically improves the possibilities of
a program.

Here is the first time we're introduced with the most basic logical function of all -
if. This one, along with other logical functions can be found in the Loop section at
the top of the section list.

What if does is it checks the condition and if the condition is true, executes the
code inside it.

If the condition is not met and considered false, the program will not execute the
code inside the function.

There is also a more advanced version of this function called if-else, which
executes another part of the code if the original condition is not met.

Our conditions in these examples are checking whether the buttons have been
pressed or not.

For that, we're using the function mp.buttons.pressed(BUTTON) whose block
can be found in the I/O section.

This function will return a true boolean value if the specified button has been
pressed and false if it hasn't.

It can also be modified that it checks whether the button has been released.

Every time you press the button the screen changes color and you get an
indicator which button has been pressed.

Pretty much every button works this way, besides, of course, the joystick.

Joystick
This component works very differently than the buttons.

It has two main values, X-axis and Y-axis. Both of those variables can take a
value between 0 and 1023.

When the joystick is in the middle, they will take the middle value. Since the
precision of it isn't perfect, that will be somewhere around 500.

As you move the joystick left the value of the X-axis increases and while
moving it to the right, decreases.

Moving the joystick up decreases the Y value and moving in down increases it.

This logic is a little bit different than the default screen x and y pixel location
values, so be careful when working with it.

Let's see this in an example.

Every time the joystick is pushed up or down, the circle will change its location
until it gets to the edge of the screen.

Green Math functions are used for changing variable values, just like we did
here.

The code is simple enough and it should be no problem to understand it.

Buttons and time
Just pressing the buttons is cool, but what about long presses? Can you create a
program that does different things depending on how long the button has been
pressed?

Well, of course you can!

The logic behind this next example is a bit more complex, so make sure everyone
pays close attention.



Where is joystick right now?
Function mp.buttons.getJoystickX() and mp.buttons.getJoystickY() returns the
current value of those variables, thus allowing you to check the joystick's
current location.

Here we see the appearance of one very important function - millis(). What
millis() does is it returns some unknown time value depending on when it's
called.

Even though we cannot do much with the exact value, we can use it for
comparison.

The timer starts counting milliseconds every time we turn on the phone, so when
this function is called, we'll get a specific timestamp back.

Then we can call that function a little bit later to determine how many
milliseconds have been since the last time we've called it.

In this example, we enter the specific subsection of the code only after the
number one has been pressed for two seconds.

At that moment the LED color changes and we get a cool effect. You can use this
function in many ways, not only for buttons.

Flashing LEDs
The most important functions for this lesson can be found in the I/O section.

Also, we're going to use some loops as well as time delays to create some cool
effects on the back of the phone.

Simple light
LEDs are actually all located in one array called mp.leds that has a length of 8.

The one in the upper right corner of the phone, when you turn it around, is
led[0].

The number increases with the clockwise direction, meaning that the LED in the
upper left corner is led[7].



Comparing two timestamps
The values are compared just like two regular numbers. So if we want to know
has it been more than two seconds between the two calls, just add 2000
milliseconds to the first value or subtract 2000 milliseconds from the second
value before comparing.

LEDs also have a little bit different color library than the screen. It is called CRGB
and it has many more color combinations. You can practically set your LEDs to
any color you can imagine.

All these colors can be selected from the drop-down menu, so no need to keep
them memorized.

Here is an example.

LED cycle
Here is one example of how to set the LEDs in motion. It is really simple yet
effective and it's not the only way you can do this.

Having multiple for loops inside one another can often be the way of creating
some cool programs. In this example, for loop is actually going through 64 cycles
before it ends.

Here it allows you to turn off all the LEDs except that one you want to have turned
on.

Increasing or decreasing delay() function will change the speed of alternating
LEDs.

Functions

Now that you've been introduced to every component it is a good time to meet
some functions, which are going to be crucial for making our first app.

Functions are basically sections of the code that receive and return some values
and can be used in many ways.

They are crucial if you want to keep your code clean and fast. Also, they allow for
some quick upgrades without having to redo half of the code.

Once called, the program will automatically jump to the code in the function and
will run that before continuing with the rest of the program.

Whatever function returns can be caught in another variable or in a comparison.

For example, you can call a function and depending on what it returns, decide
whether to enter the loop or not.

Creating my fist app

The app that we're going to create is one that is going to showcase pretty much
every feature we've gone through so far.

It will look like a simple video game, kind of like Snake, where you'll be able to
move a circle and change its properties.


How do functions work?
You can create a new function in the Functions section where you're setting
its name, type, and variables.



Where do I start?
Creating a whole app is not an easy task. There are a lot of little details that
need to be considered in order to make the app work as good as
possible.When creating your own app, always set the goals at the beginning,
so you can work from the bottom up with some structure in mind.Writing
code without a bigger picture in mind can be a big problem later on in the
code development.

Main loop

This is what the main part of the program looks like. It doesn't say much since it
has several functions that run the show in separate blocks.

We're going to go through each of those functions in order to see what are they
exactly doing.

You can notice the clever use of if-else here - a different function will be called
depending on the value of the global variable color.

Using joystick

At the beginning of each loop, the program checks whether the joystick has been
moved or not.

If it has been moved in a certain direction, it will change the location variables of
our character.

Placing multiple ifs instead of if-else we can get the diagonal movement, since
one if doesn't exclude another.

The sensitivity of joystick can be changed by changing the values of
comparison to the X and Y values.

LEDs

Here we're using the mighty power of our LEDs to create some really cool wall
effects.

Whenever the ball touches the wall, the LEDs at the back of the phone will light up
and thus create an indication of the collision.

Notice that since both X and Y values are actually the center of the ball, we must
keep in mind the radius size of our ball so that we know when the collision
actually appears.

Since the length of the screen is 160 pixels and is taking up the values between 0
and 159, we are comparing it to the values of 0 and 159.

Same works with the height, where the most important values are 0 and 127.

Object size

Here we can choose our radius size by pressing buttons A and B.

Button A will increase its size by two and button B will decrease it.

There are also checks at specific values so we can stop our circle from getting
too big or too small.

Colors

We've created the variable color so we can easier change circle colors.

This is probably the easiest way to do it, but it can also be done in other ways.

Pressing on of buttons 1, 2 or 3, this variable changes. We will use it in another
function.

This is the part of the code where we come across the if-else part.

Depending on the color variable that we've previously changed, we are entering
one of the three functions.

They all work in the same way but have a tiny little difference that makes them
special.

Depending on which function is called, the color of the circle will be different.

Clearing the screen with the black color allows the circle to move swiftly and look
like an animation.

Also, the function prints out the color of the circle at the bottom of the screen.

We've already set the font type and font size at the beginning of the program so
there is no need in doing that now.

Print data

And finally, we're printing out some additional data on the screen.

At the bottom of the screen, right below the color code, there will be the current
radius size shown.

Also, the coordinates of the circle center will be shown in the upper left corner.

This will perfectly track the circle along with its size.

Since this function was called after the draw_circle function, this text will always
be visible even when the circle is at the same location on the screen.

If you want it to be otherwise, just call the draw_circle function after this one.

The next picture represents the entire program.

1

2

3

4

5

6

7

8

9

10

11

12

#include <MAKERphone.h>

int x;

int y;

int radius;

int color;

MAKERphone mp;

int print_data() {

 mp.display.drawString((String("Radius: ") + String(radius)), 50, 110);

 mp.display.drawString((String("X: ") + String(x)), 2, 2);

ARDUINO

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

 mp.display.drawString((String("Y: ") + String(y)), 2, 17);

}

int draw_circle_yellow() {

 mp.display.fillScreen(TFT_BLACK);

 mp.display.fillCircle(x, y, radius, TFT_YELLOW);

 mp.display.drawString("Color: Yellow", 45, 95);

}

int color_select() {

if (mp.buttons.pressed(BTN_1)) {

 color = 1;

}

if (mp.buttons.pressed(BTN_2)) {

 color = 2;

}

if (mp.buttons.pressed(BTN_3)) {

 color = 3;

 mp.display.drawString("Cyan circle", 40, 10);

}

}

int LEDs() {

if (x - radius <= 0) {

 mp.leds[1] = CRGB::BlueViolet;

 mp.leds[2] = CRGB::BlueViolet;

}

if (x + radius >= 159) {

 mp.leds[5] = CRGB::AntiqueWhite;

 mp.leds[6] = CRGB::AntiqueWhite;

}

if (y - radius <= 0) {

 mp.leds[7] = CRGB::Peru;

 mp.leds[0] = CRGB::Peru;

}

if (y + radius >= 127) {

 mp.leds[3] = CRGB::MediumSpringGreen;

 mp.leds[4] = CRGB::MediumSpringGreen;

}

}

int radius_select() {

if (mp.buttons.pressed(BTN_A) && radius < 24) {

 radius += 2;

}

if (mp.buttons.pressed(BTN_B) && radius > 6) {

 radius += -2;

}

}

int check_joystick() {

if (mp.buttons.getJoystickX() < 400 && x < 159 - radius) {

 x += 1;

}

if (mp.buttons.getJoystickX() > 600 && x > 0 + radius) {

 x += -1;

}

if (mp.buttons.getJoystickY() < 400 && y > 0 + radius) {

 y += -1;

}

if (mp.buttons.getJoystickY() > 600 && y < 127 - radius) {

 y += 1;

}

}

int draw_circle_red() {

 mp.display.fillScreen(TFT_BLACK);

 mp.display.fillCircle(x, y, radius, TFT_RED);

 mp.display.drawString("Color: Red", 45, 95);

Conclusion

When we finally write the entire thing, we can export it as an app and voila!

In chapter 3 there is a detailed tutorial on how to do this, so go check it out!

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

}

int draw_circle_cyan() {

 mp.display.fillScreen(TFT_BLACK);

 mp.display.fillCircle(x, y, radius, TFT_CYAN);

 mp.display.drawString("Color: Cyan", 45, 95);

}

void setup() {

 mp.begin(1);

 mp.display.fillScreen(TFT_BLACK);

 mp.display.setTextColor(TFT_LIGHTGREY);

 mp.display.setTextFont(2);

 radius = 10;

 x = 64;

 y = 80;

}

void loop() {

 mp.update();

check_joystick();

LEDs();

radius_select();

color_select();

if (color == 2) {

draw_circle_red();

} else if (color == 3) {

draw_circle_cyan();

} else {

draw_circle_yellow();

}

print_data();

}

There is a new app on your main menu ready to go!

Uploading apps and games

Direct Upload
Now that you know everything about what CircuitBlocks can do and how it works,
let’s head to some programming.

There are two main ways you can upload your creations to Ringo – upload it
directly to the phone and running it as .bin.

Let’s touch on these two ways so you can see what works best for you.

Uploading the program directly to the Ringo’s memory
is simple and effective!

It is done by just pressing the “Run” button in the top
right corner of the screen.

The program will compile and upload to your phone,
which will take about a couple of minutes.

There is also a yellow bar right below the header that
indicates the progress of compiling and uploading.

Yellow bar represents compilation and upload progress

“Run” command will not only upload everything’s that’s on the board to the
phone but will also erase the default firmware, so you won't be able to go back
to using the phone unless you restore the default firmware!

However, that is really easy, since you just go back to the main menu of
CircuitBlocks and press the ‘Restore Ringo Firmware’ button.

This method should be used when testing the program and just want a quick
check of functions or when you only want this app to be available on your phone!

ex. You made a video game and you want to organize a contest with your
friends to check out who gets the highest score – this way you can make Ringo
game only device!

Making a .bin file
When you make sure your program works just like you
want it to, it’s time to make it part of the Ringo OS.

 By doing this method, you’re basically putting it on the
main menu screen so you can use it whenever you
want to!

Though it won’t load as fast as the other regular apps, it works more like the
games you have on your menu. The games first load for about 10-20 seconds
and then are loaded to your phone. When you want to return, just press the
‘Home’ button and select ‘Home’ icon to go straight back to the lockscreen.

Pressing the ‘Export to .bin’ button will open a new window so you can choose
the exact location you want to export the .bin.

The whole process takes about 30 seconds.

Now we need to transfer it to Ringo.

For this step, you’re going to use the SD
card, which is located at the bottom of
the brain board.

Push it in and a spring mechanism will
pop it out.

Now take a little USB-like device that
you’ve received in your Ringo box – it’s
SD to USB adapter and it allows you to
work with your SD card even if you
don’t have that exact port on your
computer.

When you plug it in there should be
some default folders on your SD card.

Create a new folder and name it
however you want (in this example it’s
named ‘NewApp’). Now copy
the .bin file inside.

You can see that in another game
folder there is also a .bmp file
named ‘icon’. It is, as you might guess,
an icon that will be shown on the Ringo
main menu.

NOTE: Make sure to name the .bin file
the same as the folder.Ex. If the folder
is named ‘NewApp’, the game file
should be named ‘NewApp.bin’.

If you wish to create your own app
icon, make sure it’s a 24×26
dimension and a 24-bit Bitmap
(.bmp).

Name it 'icon' and put it in the same
folder.

If you don’t do that, the app will still be
visible in the main menu but will
contain no icon.

Now that you know how to upload your apps and games to the phone, it’s time

to start creating!

