
Introduction

Installation
Welcome to the CircutBlocks tutorial!

If you don’t know, CircuitBlocks is a Scratch-based (a visual block programming
language) IDE in which you can easily and effectively create and upload your
projects to the Nibble console.

This tutorial is going to be broken down into several chapters, each representing
one of the important aspects of the IDE.

NOTE: CircuitBlocks will be referred to as CB in the future

Installation
CB is supported on all major platforms.

The installation process is really easy as you just need to download the file and
install it just like you would with any other program on your preferred platform.

Windows
Go to the CircuitBlocks download page

Download the latest version *Windows.exe (ex. CircuitBlocks-1.1.0-
Windows.exe) - Check if you have a 32 or 64 version. Go to Settings on your
PC, click on the System option and find the About section where you'll see
the system type.

Double-click the file to run the executable

CB will automatically install and create a new desktop shortcut

Nibble coding - first steps

Your PC is NOT at risk!

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

This is the message you might get
when trying to install CircuitBlock on
your PC. Windows reports a threat
despite the program being safe to
download and run.

Please proceed with installing by
clicking on 'More info' option.

After you click on 'More info' option, an
option to 'Run anyway' should appear
at the bottom of the window.

Proceed by clicking on 'Run anyway'.

Linux
There are two ways of installing CB on Linux

Installation:

Go to the CircuitBlocks download page

Download the latest version *Linux_amd64.deb (ex. CircuitBlocks-1.0.1-
Linux_amd64.deb)

Double-click the file to run the installation (Ubuntu)

Write inside a terminal sudo dpkg -i <path to the downloaded file
.deb> (Other Linux distros)

CB will automatically install and create a desktop entry

Stand-alone (AppImage):

Go to the CircuitBlocks download page

Download the latest version *Linux.AppImage (ex. CircuitBlocks-1.0.1-
Linux.AppImage)

Right-click on the file and select ‘Properties’

Go to 'Permissions' and tick ‘Allow executing file as program’

Double-click the file and the installation will complete automatically

 There is a possibility that a notification that says your PC is at risk may pop up
when you try to install CircuitBlocks. Don't worry, this happens regardless of
CircuitBlocks being safe to run. See the instructions below on how to handle
this notification.

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

Mac OS
Go to the CircuitBlocks download page

Download the latest version *Mac.dmg (ex. CircuitBlocks-1.0.1-Mac.dmg)

Move the files to ‘Applications’ folder

CB will be installed automatically

Basics

Interface

https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download
https://www.circuitmess.com/circuitblocks/download

Starting CB will open a window like this.

It’s pretty simple – starting a new project (sketch) can be done by clicking
the ‘New project’ button.

Saved sketches will appear right next to that button and you can access them
at any time.

Whenever you encounter an error, press the 'Send error report' at the bottom of
the main screen. You'll get the report and the error number - you can use that in
the CircuitMess community forum so that our team members can help you more
efficiently.

Starting a new sketch
When starting a new sketch you'll get an option to choose from a Ringo project
and a Nibble project, as well as a code project and a block project.

Since this tutorial is going to be focused on Nibble, we're going to be selecting a
Nibble project.

We've added a whole new layer to the CircuitBlocks - you don’t have to use the
blocks anymore, but rather can write whole games by using C/C++ just like in
Arduino IDE.

However, we're going to focus on the block building, rather than code writing.

What you can also do, is to make part of your game using blocks and then
transfer it to the coding version to add some additional code, like buzzer

sounds. This will allow you to use the easier way of coding (via blocks) most of
the time and in the end, just add a few details to top it off.

Code project is pretty much the same thing you'll get in Arduino IDE - straight up
Arduino C/C++ that will run your programs based on the code you've written.

On the other hand, block projects are the real ones here. There you'll be able to
generate program code from the blocks that you drag-and-drop. This is a real
Scratch-like experience and it is highly recommended to everyone beginning
their programming career or learning the ins and outs of the Nibble library. The
code that is generated can then be copied and modified in the code project.

We advise that you start the block project regardless of your programming
skills just so you can get to know the device better!

You can always copy the code from the block version and switch it to the
coding version. However, you cannot go from the coding version back to the
block version. That’s why we encourage you to use the block version
whenever you can.

This is the main interface you will be
looking at most of the time.

On the top of the screen, there is
a toolbar from which you can access
main program functionalities.

The block selection tool is located on
the left side.

In the middle of the screen is where
you’ll be “drawing” your code with
the blocks.

On the right is where those drawings
will be translated into code. It is the
same code editor used in the VS Code,
but it is not editable. If you want to edit
the code, you have to copy it and
transfer it to a new code based project.

If you don’t like the dark mode
(blasphemy if you ask us!), you can
easily switch it by pressing the light
bulb button in the top right corner of
the code editor.

Toolbar
There are seven main components
here:

1. Back to the main menu – returns
to the main menu without saving

2. Save/Save As… – saves the file in
the default sketch directory

3. Nibble connected
indicator – indicates whether the
console is connected or not

4. Export to binary – creates .bin file
of the code which can be directly
uploaded to the console

5. Open serial - open Serial port

6. Close Code – closes the code
editor to expand the ‘drawing’
area

7. Run – compiles and uploads the
code to your console

When the console is not connected, the red ‘Run’ button will turn grey and the
indicator will say ‘Nibble disconnected’ with the red dot instead of a green one.

While a code you’ve written is being uploaded, a progress bar will appear right

below the toolbar which indicates how much data has been compiled/uploaded
so far.

When it reaches 50% it means that the compilation is over and when it reaches
100% it means that the upload to the console is finished.

1. Main code screen – this is where
the blocks will appear in the
textual format, code words are
colored while the regular text is
white

2. Light mode switch – switch the
background of the code editor
between black and white

3. Expand – stretches the code
editor over the whole window

4. Close – closes the code editor,
same functionality as ‘Close
Code’ button from the toolbar

The ‘Drawing board’ is the most complex part of the IDE. It’s where all the magic
happens. It is divided into two main sections. On the left is a board where you
select the blocks and on the right is a board where you place them. Each type of
block has its own color so it’s easily recognizable.

1. Search bar – dynamic search bar with which you can easily find any
component you’re looking for

2. Component selector – divided into categories by names and colors

3. Drawing board – a place where you create your programs by placing the
components in a certain order

4. Center icon - places your blocks in the center of the board

5. Zoom buttons - zoom in and out of the board

Each of the components will be explained in detail and come with a few
examples of how to use them together.

Using blocks

Types of blocks
There are a total of nine block types in CB. Each of them is represented by their
own color. Every block translates to code, which is then compiled and uploaded
to the console, just like on every Arduino based platform.

Pressing on every block type will open a section from which you can drag-and-
drop those blocks into the drawing area.

Also, pressing on ‘More’ will open even more blocks that are not so commonly

used.

There are two main functions of every Arduino code – void setup() and void
loop().

Everything that goes into the void setup() the function will run only once. It is
primarily used for starting the software, initializing and declaring variables and
running functions that only have to run once (ex. Intro screen in a video game).

The void loop() is where everything else takes place. It basically runs every bit of
code inside it over and over again (speed depends on the device – just imagine
it’s ultra-fast!). It should pretty much follow the refresh rate of the screen and
make the program do things accordingly.

Every block you place automatically goes into the void loop() function.

If you wish to put something in the void setup(), you have to drag the main block
from Functions and place your blocks inside as you wish, but more on that a little
bit later.

Elliptical blocks
Elliptical blocks represent variables. Whether
we’re talking about integers, strings or other
variable types (other than boolean), they can
all be recognized by the same shape.

Also, larger blocks that have elliptical shape
return either integer or float values.

 When ever you find circular “holes” inside
some blocks, that is the place where variables
can be inserted. It’s most commonly found
in comparison or action blocks.

Triangular blocks
Boolean variables are represented by
triangular blocks.

Both variables (true and false), as well as
functions that return boolean values, have the
same shape.

Regardless of color, each of these blocks
returns either true or false.

Triangular “holes” require boolean blocks to be
inserted.

Building blocks

Everything else is basically a building block.
Those are functions that have no return value
(they return null). Both elliptical and triangular
blocks first have to be placed inside of the
building blocks in order to act as part of the
program.

They have a specific “puzzle” shape and can
be stacked inside each other.

The main building block is located inside the ‘Functions’
section.

It basically gives you two main building blocks sections.

Everything that is placed inside Arduino run first goes into void
setup() and everything that is placed inside Arduino loop
forever goes into a void loop().

Inserting blocks
Now, this is the main part.

The whole point of blocks-like IDE is connecting
blocks and placing them one inside another.

It is all done by simple drag-and-drop action.

Here is an example of a program that will set
the variable Var to 1 and then increase that
variable while it is smaller than 10.

At the end of the program, Var will be 10.

This is just a simple example and block-
building will be further explained in the
following chapters.

Block sections

There are a total of nine sections in CircuitBlocks. We've organized them so that
you'll be able to find everything in maximum two clicks.

Sections themselves are pretty explanatory but we'll go through them all just so
you can get a little bit better understanding of the whole concept.

Some of the sections also have additional blocks (in the 'More' menu) where
you'll be able to find some of the functions that are not used that often, but can
still be useful.

Logic

This is where the base
of every code is
located.

Every if, if-else,
else function, as well
as
comparisons, and/or,
not, true/false and
other logical
operators.

Loops
Loops are functions
that repeat everything
inside for a specific
amount of time.

They can either have
conditionals, and
repeat for as long as
that condition is met,
or they can have a
pre-determined
amount of repeats.

Math
Pretty much every
math function is
located here.

From basic operations
to rounding numbers
and working with
angles, you will easily
trigger your inner
Einstein or Pythagora
in a matter of
seconds!

Text

Strings, characters,
and string
manipulation. Great
place for creating new
text and implementing
it to your programs.

Variables
Create a variable of
any type and set its
name and desired
value.

CB will automatically
recognize the type of
the variable (int,
double, string,
boolean) so you don’t
need to worry about
that.

Functions
The Default Arduino
function (which is
explained on the
previous page) is
located here.

You can also create
your own functions
which can then be
inserted as one of the
main parts of your
program.

Input/Output

Everything regarding
Nibble's buttons and
audio is located here.

Not a lot of functions,
but when used right
they can do wonders!

Display
Well, all these blocks
are really not
important if you don’t
see anything on the
screen!

Here is where all the
magic translates to
those colored pixels.
You can create so
much through these
blocks.

Time
Delays, timers, and
other time-related
stuff, great for creating
cool animations and
video games.

Search bar
There is also a search bar above all function sections to ease the search for that
one specific block you just can’t seem to find (where is that PRINT???).

Just type in whatever comes to your mind and all blocks that have anything to
do with the written word will be shown on the right-hand side.

Now, you really can’t say that it’s impossible to find something.

You’ve learned everything about the blocks!

It’s time to move on to the next lesson…

Changing screen color
Now that you're accustomed to every type of block, it's time to learn how to use
them!

There will be a series of small examples where you'll be able to get an
understanding of how the Nibble library works.

Each example will show different functionalities. In the end, we'll just bring all of
that together to create a cool app!

Let's begin!

Example #1
Let's kick things off as simple as possible.

The main component on Nibble is definitely the screen since working without one
would be pretty much impossible.

What we want to do as a test is to change the screen color of our program.

The default screen color is black, or as it is known in our library, TFT_BLACK. All
colors from this
library are labeled with TFT_ prefix because they are made to be used on TFT
screens.

Now let's move to the code generated by the blocks.

Since we want to turn our screen cyan, we are calling sprite->clear() function
from the Display section, just with a different parameter.

Now that we've made sure everything is set, we can run the program. It will first
be compiled and then uploaded to the console.

Ringo's screen should now be cyan. It's really as simple as that.

This is just a beginning but you can imagine that the possibilities of this screen

are countless.

Restoring defaults
Now, what if we want to stop making cool things and just use our phone? Well, it
takes only a couple of clicks to get everything back to normal.

Anytime you want to restore the original Nibble firmware to your phone, you
can do it by pressing the 'Restore firmware' button on the main menu and
choose 'Nibble'.

Just don't forget to save the project before exiting!

Colors
The full list of available colors can be found in the Display section

Now that we've covered the basics, let's head out to something a little bit more
advanced.

Controlling the display

Quick commands

Before we go onto the next step, there is a little trick that might help you when

programming.

Press the right-click on your mouse on one of the blocks to open a quick action
menu to easily duplicate blocks, add commnets, delete blocks, or seek for
help.

You can also do some of these commands by pressing other buttons on your
keyboard.

To delete a block, press DEL button on Windows/Linux or DELETE on MacOS.

To copy a block, press Ctrl+C on Windows/Linux or Cmd+C on MacOS.

To copy a block, press Ctrl+X on Windows/Linux or Cmd+X on MacOS.

To paste a block, press Ctrl+V on Windows/Linux or Cmd+V on MacOS.

Scrolling colors
Now we're going to use the loop() part of the code.

See that display.commit() function? It's probably the most important function
of all and it's located under the display section.

Its mission is to read everything that has happened between the last time it was
called and now and to transfer those changes to the hardware.

For example, sprite->clear() function would not change anything if the
display.commit() isn't called.

That function says 'draw sprite to display' in the blocks!

We've also used another new block called wait().

It translates to the delay() function which stops everything for a certain
amount of milliseconds.

The number value block can be found in the Math section and its value can be
changed to suit our needs.

Since the loop() function is really fast, sometimes we need this delay to actually
see what is going on on the screen.

Using delay when expecting a fast and responsive program, however, is not the
way to go,

especially when we're using buttons. More about that in the next lesson.

What we're actually doing in this program is alternating the screen color
between three values.

Firstly we change it to cyan, then wait 500 milliseconds or 0.5 seconds.

Then, we change it to orange and wait another 500 milliseconds.

Lastly, we change it to yellow, wait 500 milliseconds, and return back to the
beginning of the loop, where the screen is again changed to cyan.

Notice that we're calling the display.commit() function after each color
change in order to transfer that color to the screen.

Writing out some text
Now that we know how to change the background color, it's time to start writing
something on that canvas.

Nibble library offers three different fonts that can be re-sized and re-colored
as we like.

Functions for that are rather simple and should not be a problem to understand
for anyone.

With this program, we're writing some words out on the screen in different fonts,
sizes, and colors.

The font type is easily changed with the drop-down menu of the set font type
block. The font size, however, multiplies the size of the selected font by the
desired value. By default, both of those values are 1, so setting them at the
beginning of the program to that same value actually made no difference.

Later both of those values have been changed. In the last example, we're printing
out two words "And SIZE!" in a different font that is twice the size.

The print() function here is something that we're going to use quite often. The

 It's important to specify font type and to put the 'set font type' block inside the
program, otherwise the program might crash!

first empty slot is a string of characters that are meant to be written out.

You can find an empty one in the Text section.

The second and third slot are the location of the first letter. Setting both of those
values to 0 will print out words in the upper left corner of the screen.

With these numbers, we're actually referencing pixel locations. Our screen is
128x128 pixels and we can manipulate each and every one of them.

Everything that we write/draw between the x values of 0 and 127 and y values
of 0 and 127 will be visible on the screen.

If any of those values is out of that range, we will not see the component.

Loading...

Loading...

Loading...

Loading...

Something more

Adding a bit of code
Now that our game has been finished we can notice one thing - there is no
sound!

There is a small buzzer on the device that is able to produce many different
beeps, buzzes, and other crazy noises.

We could also use blocks to add it, but this way we'll explain how to do it by code.

This is the perfect time to copy the entire game code from the right side of the
screen and to create a new project!

First, remebmer to save the project and name it accordingly.

Then, copy the entire code by selecting it, pressing the right mouse button, and
clicking 'copy' or by pressing Ctrl+C/Cmd+C.

Go back to the main menu and open a new project.

Make sure to select Nibble and code for your project type.

Your screen should look something like this.

Delete the code that is inside and paste the copied code on an empty screen.

When you upload the code by clicking 'Run', your Nibble should have the exactly
same game as it did before!

Now, let's add the sound!

First thing we need to do is add a sound library.

The library we use is called Piezo and you should add the following line
anywhere among the #include section.

Now, let's add a bit of tone wheneve we press buttons A or B.

The function we're looking for is Piezo.tone() which has two numbers inside the
brackets.

The first number determines the frequency of the tone, while the second
number determines the length of the tone.

1 #include "Audio/Piezo.h"

ARDUINO

You can change the numbers up a bit to get different sounds!

One final thing before finishing up - turning the sound on!

Find the main void setup() function and put the following line at the bottom of it.

Now re-upload the game by pressing the red 'Run' button and here it is - you've
just added some sounds to your game!

If you wish, you can add even more sounds to make the game even cooler!

Game ideas
On CircuitMess GitHub page you can find many more games for not only the
Nibble, but for other consoles as well.

1

2

Piezo.begin(BUZZ_PIN);

Piezo.setMute(0);

ARDUINO

https://github.com/CircuitMess
https://github.com/CircuitMess

If you study these codes, you will learn how are these games written, which kind
of methods are used for different actions, and most importantly - get some
ideas for you own new games!

You can also scroll many different forums online, like our CircuitMess Community
forum, and exchange knowledge and ideas with people like you all over the
world!

Only the sky is the limit - now get to work and code some games!

Loading...

https://community.circuitmess.com/
https://community.circuitmess.com/
https://community.circuitmess.com/
https://community.circuitmess.com/

